Whole genome expression profiles of yeast RNA polymerase II core subunit, Rpb4, in stress and nonstress conditions.
نویسندگان
چکیده
Organisms respond to environmental stress by adopting changes in gene expression at the transcriptional level. Rpb4, a nonessential subunit of the core RNA polymerase II has been proposed to play a role in non-stress-specific transcription and in the regulation of stress response in yeast. We find that in addition to the temperature sensitivity of the null mutant of Rpb4, diploid null mutants are also compromised in sporulation and show morphological changes associated with nitrogen starvation. Using whole genome expression analysis, we report here the effects of Rpb4 on expression of genes during normal growth and following heat shock and nutritional starvation. Our analysis shows that Rpb4 affects expression of a small yet significant fraction of the genome in both stress and normal conditions. We found that genes involved in galactose metabolism were dependent on the presence of Rpb4 irrespective of the environmental condition. Rpb4 was also found to affect the expression of several other genes specifically in conditions of nutritional starvation. The general defect in the absence of Rpb4 is in the expression of metabolic genes, especially those involved in carbon metabolism and energy generation. We report that various stresses are affected by RPB4 and that on overexpression the stress-specific activators can partially rescue the corresponding defects.
منابع مشابه
Genome-associated RNA polymerase II includes the dissociable Rpb4/7 subcomplex.
Yeast RNA polymerase (Pol) II consists of a 10-subunit core enzyme and the Rpb4/7 subcomplex, which is dispensable for catalytic activity and dissociates in vitro. To investigate whether Rpb4/7 is an integral part of DNA-associated Pol II in vivo, we used chromatin immunoprecipitation coupled to high resolution tiling microarray analysis. We show that the genome-wide occupancy profiles for Rpb7...
متن کاملHuman RNA polymerase II subunit hsRPB7 functions in yeast and influences stress survival and cell morphology.
Using a screen to identify human genes that promote pseudohyphal conversion in Saccharomyces cerevisiae, we obtained a cDNA encoding hsRPB7, a human homologue of the seventh largest subunit of yeast RNA polymerase II (RPB7). Overexpression of yeast RPB7 in a comparable strain background caused more pronounced cell elongation than overexpression of hsRPB7. hsRPB7 sequence and function are strong...
متن کاملSubunit hsRPB7 Functions in Yeast and Influences Stress Survival and Cell Morphology
Using a screen to identify human genes that promote pseudohyphal conversion in Saccharomyces cerevisiae, we obtained a cDNA encoding hsRPB7, a human homologue of the seventh largest subunit of yeast RNA polymerase II (RPB7). Overexpression of yeast RPB7 in a comparable strain background caused more pronounced cell elongation than overexpression of hsRPB7. hsRPB7 sequence and function are strong...
متن کاملDomainal organization of the lower eukaryotic homologs of the yeast RNA polymerase II core subunit Rpb7 reflects functional conservation.
The subcomplex of Rpb4 and Rpb7 subunits of RNA pol II in Saccharomyces cerevisiae is known to be an important determinant of transcription under a variety of physiological stresses. In S.cerevisiae, RPB7 is essential for cell viability while rpb4 null strains are temperature sensitive at low and high temperatures. The rpb4 null strain also shows defect in sporulation and a predisposed state of...
متن کاملCrystal structure and RNA binding of the Rpb4/Rpb7 subunits of human RNA polymerase II
The Rpb4 and Rpb7 subunits of eukaryotic RNA polymerase II (RNAP(II)) form a heterodimer that protrudes from the 10-subunit core of the enzyme. We have obtained crystals of the human Rpb4/Rpb7 heterodimer and determined the structure to 2.7 A resolution. The presence of putative RNA-binding domains on the Rpb7 subunit and the position of the heterodimer close to the RNA exit groove in the 12 su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 5 شماره
صفحات -
تاریخ انتشار 2003